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Abltract-The propagation of an interior penny-shaped crack in a ductile material subject to uniform
tension at infinity is investigated using the methods of Hankel and Laplace transforms. The crack is
assumed to be thi: Duldale crack which has a uniform tensile yield stress around its crack tip. Exact
expressions for the finite stress condition at the crack tip, the crack shape, the crack opening displacement
and the enellY release rate are obtained and written as the product of explicit dimensional quantities and'a
non-dimensional dynamic correction function. All the expressions obtained reduce to the associated static
results wile" the crack speed tends to zero. Usiq an electronic computer, the dynamic correction functions
were calculated for various values of the non-dimensional parameters involved.

The size of the plastically deformed zone around the crack tip is determined from the finite stress
condition. A general, convenient method is described to determine the plastic zone size usiq the
non-dimensional dynamic correction curves. It is shown that the plastic zone width shrinks significantly
with increasiq crack speed. Due to the inertial effect of the material particles, the crack opening
displacement and the energy release rate are also found to decrease with increasing crack speed.

INTRODUCTION

The plastic-zone size in front of a stationary slot in a metallic plate under static tension was
investigated exPerimentally and predicted by Dugdale, using a model of ductile crack[1]. The
Dugdale model predictions were found to be in close agreement with experimental results [1, 2].
The model was applied to a stationary penny-shaped crack in an infinite solid material or a
finitely thick plate[3, 4].

The propagation of a Dugdale crack was investigated, using steady-state solutions [5,6]. The
finite stress conditions at the crack tip predicted that the ratio of the plastic zone size to the
crack length is independent of crack speed and remains exactly the same as that for the
corresponding static problems [5, 6]. However, experimental results indicate that the crack tip
plastic zone in steel may shrink as the crack increases in velocity [7, 8], The shrinkage of the
crack-tip plastic zone as a function of crack speed was predicted from the finite stress condition
of the Dugdale model in a recent study on the propagation of a two-dimensional central
crack[9].

In elastostatic problems, the contours of equal maximum shearing stress for a two­
dimensional central crack and a penny-shaped crack were presented to visualize the distribution
of stress around the crack for each case [10]. In general outline, the variations of the contour
curves are similar between the two cases. However, the main difference lies in their behavior
near the crack edges [10].

Cracks often initiate and propagate from the interior of a solid material. To study the effect
of crack speed on the behavior of a fracturing ductile material containing an interior crack, the
propagation of a Dugdale penny-shaped crack is considered in the present work. Using the
integral transform methods similar to those used in an earlier work [1 I], the shrinkage of the
plastic zone and the variations of the crack shape, the crack opening displacement and the
energy release rate are investigated as a function of crack speed and material properties.

STATIONARY DUCTILE CRACK

A penny-shaped Dugdale crack in an infinite solid-material is considered running in a plane
perpendicular to a uniform tensile field Po acting on the solid. Propagation of the crack creates
new stress-free crack surface with radius I(t), which is surrounded by an inelastically deformed
region of radius equal to a(t). For a Dugdale crack, the stress in the plastic zone is prescribed
as a constant tensile yield stress of material Y. Solutions of the problem can be obtained by
superposing a uniform tension field Po and the stress field which is set up by a pressure, -Po,
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acting on the crack surfaces and the tensile stress Y - Po, acting in the plastic annulus [3, 4]. The
latter dynamic problem is the main subject of interest in the present work. To obtain solutions,
cylindrical coordinates (r, cp, z) are used and the above normal stresses are described by a
function at z = 0 as follows:

() {a, r:S /(1)
eT r,1 = -Po + Y, 1(/) < r:S a(/). (1)

To solve the problem, the dynamic boundary conditions can be prescribed on the crack plane
z =°for t >°as

and
eTz, =0 (2)

v ={w(r, t), r:S aCt) (3)
0, r> a(/)

where v is the z-direction displacement normal to the crack plane and w(r, I) is an unknown
crack shape function to be determined in terms of eT(r, I) in eqn (1). The methods of Hankel and
Laplace transforms similar to those used in [1 I] can be used to solve the equations of motion
and to satisfy the dynamic boundary conditions. After inversions, the normal stress on z = 0
can be written as obtained in [1 I]:

eTzz(r, I) =eT~z - Poq (4)

where

eT~.<r, I) =-K L" Jo(sr)s2wOds, K =pj(l-II) (5)

Poq =pc.LQ. +p.L202 (6)

i" a f aQI = 0 Jo(sr)s al 0 sin [SCI1/(I -1)] a1 WOd1 ds (7)

i" l' a02 = 0 Jo(sr)s2 0 cos [SC271(1 - T)] aT WOd1 ds (8)

and

WO=Dw(r, l)rJo(sr) dr (9)

p., II, P and c. are, respectively, the shear modulus, Poisson's ratio, the medium density and the
dilatational wave speed. JoC.r) is the zeroth order Bessel function. Land L2 are operators over 71
and are defined in the Appendix. In fact, L results from an integral representation of the zeroth
order Bessel function [12]. L2 results from contour integrations along branch cuts [1 I] and
involves the quantity k2=(CI/C2)2 = 2(1- 11)/(1- 211), C2 being the shear wave speed.

The integration techniques used in [3,11) can be operated over eqn (4) to solve for the
unknown w(r, I). Indeed, eqn (4) is converted in terms of eqn (1) into an integral equation as
follows[3,11):

(10)

The method of successive approximationsfJ I) can be used to solve for win eqn (10). For the
first approximation, the wave-effect integrals Q. and Oz, i.e. Poll are dropped temporarily and
eqn (10) reduces to the associated static equation[3]. The reduced equation can be integrated to
be the first approximation[3} as follows:

(1 I)



where

and
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a =PolY

tv 1_ ( H U2 _12)'12(~2 - rrl/2 d~, r < I

q - IrQ (~2 - p)1/2(~2 - rrl/2d~, 1< r< a
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(12)

The first approximation of the normal stress can be obtained by dropping QI and (h in eqn (4)
and integrated in terms of eqn (11) for r> a as folIows [3]:

where

I _ 0 _ 2po [ aB _. -I ~ 1.1Q

{d~ ]
Un - Un - 1f y(T2- a2) sm r +a I y[(T2- ~2)U2-12)]

B =1- (I-12Ia 2)'12la.

(13)

(14)

Equations (II) and (13) are the same as the corresponding equations for the associated static
problem [3] and form a basis on which dynamic solutions are to be developed in the folIowing
sections. The finite stress condition at the crack tip is satisfied if B in eqn (13) is set equal to
zero, this determined the plastic zone size for the associated static problem [3].

DYNAMIC CRACK SHAPE

The shape of the running Dugdale crack can be obtained from eqn (10) by including the
integrals Q, and (h. To obtain closed-form solutions, it is assumed that the crack tip and the
plastic zone tip are running at constant speeds of e and V, respectively; i.e. I = el and a = VI.
The methods of successive approximation similar to those used in [9,11] are to be used to
obtain the crack shape function.

For convenience, an integral of Poq in eqn (6), QI in eqn (7) and (h in eqn (8) are defined as
folIows:

(15)

where

(16)

The first approximation of (h, i.e. (hI is obtained if eqn (II) is substituted into eqn (8). In
substitution, the time derivative of the transform of eqn (II) is obtained as[3, 11]:

(17)

In terms of eqn (17) and (hI, the first approximation of /2 in eqn (16) is obtained as folIows:

(18)

where

and

GM, I, a, 'T) =f' cos (~s) cos [SC211(t - 'T)] sin (as)s-I ds.

(19)

(20)

(21)
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In eqn (20), A results from the transformation n =AI in eqn (17). /21 in eqn (19) is equal to -/2 in
[l1J which was integrated into closed forms. In other words, the techniques used to integrate 12

in [IIJ can readily be used to integrate eqn (21) into closed forms, Similar techniques can also
be used to integrate eqn (20). After integrations, the results multiplied by Il can be written
as [9, 11]:

(22)

and

where

(24)

The above quantities ~I and Val are defined in the Appendix.
The integration techniques similar to those for Ozl can be operated over eqn (7). The first

approximation of eqn (7) is obtained as 011 in terms of eqn (17) and its integral similar to eqn
(18) can be written as:

where

and

I -~.£. ('a 'd
II - 1TK at Jo M, t, a, T)aa T

I _~.£. (VI. 1 (' .
112 - 7TKo: at JI V(A2_ 1) Jo OM, t, AI, T)lI dT dA

al(~' t, a, T) = r sin (~s) sin [sc\1/(t - T)J sin (as)s-I ds.

(25)

(26)

(27)

(28)

The techniques for integrating eqn (21) can readily be applied to eqn (28) because they are very
similar. In terms of eqn (28), III in eqn (26) and Ib in eqn (27) can be integrated. The integrated
form of Pc \111 is equal to k21/1l12\ if V2 of /21 is replaced by VI. Similarly, PC1lb is equal to
k21/lllk if e2 of Ik is replaced by el.

In terms of eqns (18) and (25) the first approximation of I in eqn (15) can be written as
follows:

(29)

where

(30)

I

The operator L1 results from L multiplied by 1/ and is defined in the Appendix. The values of gl

and hi above are equal to the values for j = 1 of the quantities as follows:

(31)
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hi =D(L. +L:z)/[2Tl(Tl- ejt//)Dai(Tl, e" ~/l)

+~i(Tl, ej, t/Ot//).
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(32)

Where the subscript i is 1for the operator L. and becomes 2 for the operator L2• It can be seen
that 81 is equal to hi at t = I. At t = a, eqn (32) can be written as hi = ah.o, where hlo is equal to
the value of hio for j =1 in the Appendix. If eqn (29) is substituted into eqn (10), the second
approximation of the crack shape function is obtained as W2 which has a form similar to its first
approximation in eqn (11). The zeroth order Hankel transform of W2 can be calculated as was
done for WI and its time derivative can be written as:

(33)

where

(34)

The value of ahtlat is equal to the value for j =1of the following equation:

(35)

E2 above for j = 1obtained from the time derivative of eqn (32) and is defined in the Appendix.
If eqn (33) is substituted into eqn (8), the second approximation of 02, i.e. 022, is obtained. The
second approximation of 12 in eqn ~16) is an integral over 022

, which can be written in terms of
eqns (19)-{21) and (33)-{35) as

where the additional term, compared to (18), is

2_lb...!J.Vle (' .
122 - 1I'Ka at I DE2(e2, A) 1o GiJ, t, AI, T)ll dT dA.

(36)

(37)

The integration of eqn (37) is similar to that for eqn (20) and the integrated results multiplied by
J.L are written as

where Dn and D.2 are defined in the forms of ~I and D.I for j =2 in the Appendix.
The second approximation of I. in eqn (16), i.e. N, is obtained using the integration

procedures similar to those for Il and the results obtained are also similar to those for Il in
eqns (37) and (38). In terms of Nand Il, the second approximation of 1 in eqn (15), i.e. 12, can
be written as

(39)

where 82 and h2 are obtained and defined as the special forms for j = 2 of the general
expressions eqns (31) and (32) respectively.

All the higher order terms of 81 and hi for j larger than 2 can be obtained from the
procedures described above. At f =a, the value of hi can be written as a ht where ht is defined
in Appendix. The expression for the general jth order term iii in eqn (35) can be obtained
through differentiation of hi with respect to time.
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A clear pattern can be seen in the process of higher order approximations. After infinitely
many approximations, the integral I in eqn (15) can be written in terms of eqns (31) and (32) as:

where

- {p~~/a, ~ ~ 1
I = PoBqo~ - pohl/a, 1< ~ ~ a

.. ..
g= L (-IY8io, hWl) = L (-IYhll.

j-I j-I

(40)

(41)

Furthermore, B in eqn (40) is found to be the product of two series, one of which can be
written into a simple form as follows[9]:

B B-Hla H= ~(-IY·-'hl'o.
= l+qo ; "'-i-I

The final form of w comparable to eqn (11) is obtained as follows:

where

(42)

(43)

(44)

It will be shown later that B must be vanishing in order to satisfy the finite stress condition at
the tip of the extended crack. The calculation of w under the condition of vanishing Bwill be
described in the next section.

PLASTIC ZONE SIZE OF MOVING CRACK

The size of the plastic zone surrounding the propagating crack can be determined by
satisfying the condition that stress singularities vanish at the tip of the extended crack. In order
to satisfy the finite stress condition, the normal stress U zz in eqn (4) must be calculated. The
zeroth-order Hankel transform in eqn (5)' can be obtained from eqn (43) as follows:

1TK WO =(1- Bqo) (d sin (s~) ~ d~+.! (' g sin (s{) ~ d~
2po Jo s a Jo s

+.! (d (lh _V(~2 -/2» sin (s{) d~.
a JI S (45)

In terms of eqn (45), the first term on the right hand side of eqn (4) can be calculated. The
second term on the right hand side of eqn (4) can be calculated from Abel's transforms in terms
of eqns (15) and (40) as follows:

(46)

The integrations of eqn (4) in terms of eqns (5), (45) and (46) exactly recover the prescribed
boundary conditions in eqn (1) on the extended crack surface for r~ a. To find the crack
stresses, eqn (4) is further integrated using the techniques similar to those used in [9, 11]. After
combinations and cancellations of terms involved in the integrations of eqns (5) and (46), the
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normal stress in eqn (4) is obtained for r> a as follows:

where
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(47)

(48)

It is clear that the first term in eqn (47) is the only singular term. To satisfy the condition of
finite stress at the extended crack tip, the first term in eqn (47) must be vanishing. This is
achieved if either Bor K, is equal to zero. From calculations, it is determined that Bvanishes at a
lower crack speed than K, does. Therefore, the vanishing of Bin eqn (42) satisfies the finite stress
condition and determines the size of the plastic zone.

The quantity B in eqn (42) consists of two main terms, B and the infinite series H of h,o in
the Appendix. The dynamic correction term hjO is proportional to the jth power of D in eqn
(24), which is in tum proportional to the square of the ratio between the crack speed and the
shear wave speed, i.e. e2 =e/c2' Therefore, H can be seen as an alternating power series of el­
If crack speed vanishes, i.e. e2 =0, H obviously becomes zero. Consequently, the finite stress
condition jj = 0 reduces to the corresponding static condition of B = O. For a propagating crack
where e is not equal to zero, numerical calculations on H were carried out. The removable
singular terms such as (~2 _1)-112 were removed by proper transformations such as A = cosh u.
The terms h.o and h20 were calculated by means of the regular four point integration formula
using an IBM 360/65 electronic computer. The first power term of H, h.o, is found numerically
to be of the order of 10-1 and the second power term h20 is 10-3

• Thus, H in eqn (42) converges
very rapidly and it appears practically accurate enough to calculate only h.o, and h20 for H. For
various values of its non-dimensional parameters e2 and l/a, the value of H at ,,= OJ was
calculated and shown in Fig. I. The value of B in eqn (14) was also calculated and shown in the

osr---------------.
112" Crack speedlshear wave speed
a"polY
--H

--8

oo~--.......--__='=_---'-~-~
06

Fig. I. Curves of nondimensionalized functions H and B for determining the plastic-zone size.
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same figure. The intersection of the curve of B and the curve for Hla gives the value of I/a at
which Bvanishes. The value of I/o depends upon the nondimensional parameters e2, a and II.

The width of the plastic zone is a -I, and the ratio of the width to the crack radius (0 -1)/1 is
determined on the basis of the determined value of I/a for various values of a and e2 at II = 0.3
as shown in Fig. 2. For values of a and e2, different from those in Fig. 2, the plastic zone size
can also be determined by interpolating the values of Hand B in Fig. I at a proper I/o which
makes B in eqn (42) vanishing.

The value of the crack-shape function w in eqn (43) can now be calculated, using the
determined value of I/o at which B vanishes. Typical values of w are obtained and shown in
Fig. 3 for various values of a and e2 at II = 0.3.

CRACK OPENING DISPLACEMENT AND ENERGY RELEASE RATE

The crack opening displacement (C.O.D.) is defined as the separation of the crack surfaces
at the tip of the actual crack, i.e. at x = I. This quantity has often been used as a criterion in
ductile fracture mechanics. Under the condition of B=0, the C.O.D. can be determined from
eqn (43) and can be written as:

(49)

where

(50)

The nondimensional dynamic C.O.D. correction function fw was calculated using a computer
and the values are shown in Fig. 2.

In energy consideration, the presence of a crack lowers the potential energy of a medium by
an amount which can be calculated for an elastic medium in equilibrium[lO, 13]. It is assumed

g·O.S

_. - (a-IlII

--fw

--~

g·O.S ..........-- ...........-- ...........--'g·O.6 --~.........----- .-.......
g·O.6 - - _ --=::::::::.:-- _
.-. ---. -- -- ---- ............- . -- .--. ---g.04---....:...--_
g·O.2 ---~-=.:--

.~4~J~-=·-=--:-::.=7-==.=.- :::::-

...
o

o

....It 0.75

~

....'l

~ .... 0.50

1.00~~~I g-O.2

Fig. 2. Normalized plastic-zone width (0 -/l/I and the nondimensional dynamic correction curves of I •. for the
C.O.D. and IR for the energy release rate.
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that the same method of calculation for the work done to the medium as was used in [lO, 13]
can also be used in the elastodynamic problem considered here. Therefore, the Wk work done
to the medium by the crack surface pressure can be calculated from eqn (43). The derivative of
Wk gives the total energy release rate which can be written as follows:

where

aK'. a { (' (a }a/ =2 al Jo 1TlpoW dr- J, (Y - Po)1Trw dr

=8(1- 1J
2)p02/2fR(a, VIe, e2)1E (51)

(52)

The non-dimensional dynamic correction function for the total energy release rate fR was
calculated by the computer and also plotted in Fig. 2. aWJal in eqn (51) can be applied together
with the rate of change of the surface energy to the extended Griffith theory[7, 10] to determine
the condition under which a crack becomes unstable. Both the C.O.D. in eqn (49) and the
energy release rate in eqn (51) can be seen as functions with an explicit factor of the crack
radius I and reduce to the associated expressions when the dynamic effect terms I and h
vanish.

DISCUSSION AND CONCLUSIONS

Dynamic effects in the propagation of a ductile penny-shaped crack in a perfectly plastic
material were investigated using the methods of integral transforms [9, 11]. The crack is
assumed to be the Dugdale crack with a constant yield stress at the crack tip under the action of
a uniform tensile stress at infinity. An exact expression was obtained which satisfies the
condition of the finite stress at the running crack tip, and the equation obtained was solved
numerically to determine the size of the crack tip plastic zone. Exact expressions for the crack
shape, the crack opening displacement, and the total energy release rate were also obtained. All
those expressions were written as the product of explicit dimensional quantities and a dynamic
correction function in terms of non-dimensional parameters. The dynamic correction functions
were calculated using an electronic computer for various values of crack speeds and applied
stresses. All the results obtained reduce to the associated static results when the crack speed
tends to zero.

The width of the crack-tip plastic zone expressed in (a -1)11 was determined and shown in
Fig. 2. It can be seen that the width shrinks significantly with increasing crack speed. For
different values of crack speed and applied stress than those shown in Fig. 2, the plastic zone

"'I'k Q.0

!iN

x
7

Fig. 3. Normalized crack shape WI(,,/(2po/> with its tip at xii = I and plastic-zone tip at all.
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size can be determined in terms of 1/a by interpolating proper values of Hand B in Fig. I,
which satisfy the finite stress condition B=0 in eqn (42).

The inertia effects of material particles resist the separation of the crack surfaces during
propagation. Therefore, the entire crack size becomes smaller as crack speed increases as
shown in Fig. 3. Similarly, the crack opening displacement and the total energy release rate
were found to be decreasing with increasing crack speed as shown in Fig. 2. The curves in Figs.
1 and 2 are similar in shape but quite different in value in comparison with the corresponding
two-dimensional results [9].
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APPENDIX

2i' 2i'Lg=- (7/2_1)-1I2g(7/)d7/. L,g=- 7/(7/2- Jr I/2g(7/)d7/
11' I 11' ,

8 i' 81'L2I =- 7/-3(7/1- 1)1I2g(7/) d7/ +- 7/-3(\ - 7/2)(7/2Ik1 - JrI/2g(7/) d7/
11', 11',

I
VI.

~1(fI, e2. ~//) = (A 2- Jr1l2(fI He1t2 dA
fli

DsI(7/.e2.S/)= i fl
' (A 2- JrIl2A(fl2-A2e22t2dA

h,O =a(L,+ L2)27/(7/el V - e,lo.,(7/. e,. Vie)

£2 =[(7/ +~/C2t)-2 - 27/(7/- e2~//)(7/2- elelt2t 2)(eW - Jrl/2el11

+27/lDs,('I1, el, S/)

El(el. ~//) = (LI +L2)£z{7/. ei, Se,t. S/)

IVI.

~,(.,. e2, S/) = £J(e2. A)(7/ He2t2 dA
fI/

o.j (7/.el,S/)=fl Ej(e2.A)A(7/2_A2eltldA.


